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Abstract

In this article we show that the pairs (SO(n,C),SO(n -1, C)) are generalized Gelfand
pairs for n > 2.

1 Introduction

Let G be a unimodular Lie group, H a closed unimodular subgroup and let X = G J/H. The
group G acts on the space of distributions on X, denoted by D'(X). A continuous unitary
representation 7 of G on a Hilbert space # is said to be realizable on X if there exists
a G-equivariant continuous linear injection j : H — D'(X). The pair (G, H) is called a
generalized Gelfand pair if for all representations = with the above property, the commuting
algebra of 7(G) in the algebra End(#) of all continuous linear operators of #{ into itself, is
abelian. This definition generalizes the classical notion of Gelfand pair, where H is assumed
compact. A direct consequence of being a Gelfand pair is the multiplicity free decomposition
of L?(X) into irreducible factors.

G. van Dijk, M. T. Kosters, W. A. Kosters and M. Poel have studied several real semisim-
ple symmetric pairs of rank one in [5], [7], [8]. They have shown that all the non-Riemannian
pairs are generalized Gelfand pairs, except the pairs (Spin(1,q + 1), Spin(1,q)) for ¢ > 1,
see [4]. G. van Dijk and E. P. H. Bosman also studied the p-adic analogues of some non-
Riemannian pairs of rank one and they proved that they are generalized Gelfand pairs.

In this article we show that the pairs (SO(n,C),SO(n — 1,C)) are generalized Gelfand
pairs for n > 2. This result is crucial for showing that every Hilbert subspace of the space
of tempered distributions S'(C™) invariant under the oscillator representation of SL(2, C) x
SO(n, C), decomposes multiplicity free, see [1].

We could also show that the pairs (SL(n, C), GL(n—1,C)) and (Sp(n,C), Sp(n—1,C) x
Sp(1,C)) are generalized Gelfand pairs for n > 3 applying a similar method as for the real
case in [7] and [8]. The difference is that we had to introduce two differential operators
instead of only one. We do not include the proof in this article.

2 Definition of Generalized Gelfand Pairs

We shall give a brief summary of the theory of invariant Hilbert subspaces and generalized
Gelfand pairs, for more details see [5]. Let G be a Lie group and H a closed subgroup
of G. We shall assume both G and H to be unimodular. Denote by D(G), D(G/H) the
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space of C®°-functions with compact support on G and G/H respectively, endowed with the
usual topology. Let D'(G), D'(G/H) be the topological anti-dual of D(G) and D(G/H)
respectively, provided with the strong topology.

A continuous unitary representation m of G on a Hilbert space # is said to be realizable
on G/H is there is a continuous linear injection j : H — D'(G/H) such that

im(g) = Ly

for all g € G (L, denotes left translation by g). The space j(#) is called an invariant Hilbert
subspace of D'(G/H). We shall take all scalar products anti-linear in the first and linear in
the second factor.

Definition 1 The pair (G, H) is called a generalized Gelfand pair if for each continuous
unitary representation © on a Hilbert space 1, which can be realized on G/H, the commutant
of (@) in the algebra End(H) of all continuous linear operators of H into itself, is abelian.

For equivalent definitions we refer to [3] and [10]. A large class of examples is given by
the Riemannian semisimple symmetric pairs and by the nilpotent symmetric pairs [3], [2].

A usefull criterion for determining generalized Gelfand pairs was given by Thomas ([10],
Theorem E). We shall apply it throughout this paper. Its proof is easy and straightforward
(l.c.). :

Denote by D'(G, H) the space of right H-invariant distributions on G provided with the
relative topology of D'(G). It is well-known that D'(G, H) can be identified with D'(G/H).

Criterion 2.1 Let J : D'(G,H) — D'(G, H) be an anti-automorphism. If JH = H (i.e.
(J|H) anti-unitary) for all G-invariant or minimal G-invariant Hilbert subspaces of D'(G, H),
then (G, H) is a generalized Gelfand pair.

We shall apply it in the following form.

Criterion 2.2 Let 7 be an involutive automorphism of G which leaves H stable. Define
JT = T7 for all T € D'(G,H). If JT = T for all bi-H-invariant positive-definite (or
extremal positive-definite) distributions on G, then (G, H) is a generalized Gelfand pair.

Remark 1 T7 is defined by <T7, f >=<T, f" > (f € D(G)) and f"(g) = f(7(9)) (9 € G).
T is defined by < T, f >=<T,f > (f € D(G)).

An important consequence of being a generalized Gelfand pair is the multiplicity-free
desintegration of the left regular representation of G on L2(G/H). So one could, more or less
without ambiguity, call this the Plancherel formula for G/H. If a fixed parametrization is
used for the set of irreducible unitary representations realized on G/H, there is no ambiguity
at all.

Let Z denote the algebra of all analytic differential operators on G which commute with
left and right translations by elements of G. Any bi-H-invariant common eigendistribution
of all elements of Z is called a spherical distribution. It is a well-known consequence of
Schur’s Lemma, that any bi-H-invariant extremal positive-definite distribution on G is spher-
ical. Spherical distributions play an important role in the harmonic analysis on G/H.
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3 Morse’s Lemma

Let X be a complex analytic manifold of dimension n (n € N), and f : X — C an analytic
function on X. The tangent space of X at a point 2% will be denoted by T'X 0. A point
20 € X is called a critical point of f is the induced map f, : TXz0 — TCf(y0) is zero. If we

choose a local coordinate system (z1,...,Z,) in a neighborhood U of z0 this means that
of of o
o e =0.
B 0 %) = oz, %)

A critical point z° is called non-degenerate if and only if the matrix

8Ef . g
is non-singular.

For a critical point z of f let the Hessian Hyf of f at = be the quadratic form on the
tangent space T, X which is defined by

n P :
H.f (;Uﬂ_a?l) Z 811716.’12J 'U:zuj, (Ul,--.,un) e =,

1<5,5€n

in local coordinates (z1,...,Zn) at z.

Theorem 3.1 (Morse’s lemma) Let f : X — C be an analytic function from a complex
manifold X into C and let z% be a non-degenerate critical pomt of f. There are local co-
ordinates (x1,...,2n) at 2° with (0,...,0) corresponding to z0 such that f can be written
as

f@1,e ) = f@°) + 23+ + 2.

The proof of the theorem is similar to the proof of Morse’s lemma in [6] p. 146.

4 The pairs (SO(n,C),SO(n — 1,C))

Assume n > 3.

Let G = SO(n,C), H = SO(n — 1,C)). The space X = G/H can clearly be identified
with the set of all points z = (z1,...,&,) in C" satisfying 3 + - + g4 = 1,

We consider the following function Q on the space X which parametrizes the H-orbits on
X:

Q(z) = 1.

Q is an H-invariant complex analytic function on X with Q(z%) = 1.

Define X(z) = {z € X| Q(z) = 2z} for z € C. Now the H-orbit structure on X is as
follows:

Lemma 4.1 a) Let z€ C, z# 1,—1. Then X(2) is a H-orbit.
b) X(1) consits of two H-orbits: {z°} and Ty = X (1) \ {z%}.
¢) X(—1) consits of two H-orbits: {—z 0} and T'_; = X(-1) \ {-=°}.
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In order to treat the sets X (1) and X (—1) separately, we choose open H-invariant sets X_;
and X; such that X(—1) C X_, X(l) ¢ X_1,X(1) C Xy, X(—l) ¢ X1and X_;UX; = X.

These sets clearly exist.
The critical points of Q are z° and —1z9. Both critical points are non-degenerate.

We examine @ in the neighborhood of a critical point. Firstly, near 20 there exists a
coordinate system {wi,...,wn—1} such that

Qwy,...,wp—1) =1+w+-+wl_,

z0 corresponding to (0,...,0). The Hessian H,oQ at 20 is given by

HpoQwr, ..., wp_1) = —w? — - —wi_.

Secondly near —z¥ there exists a coordinate system {wi,...,wn_1} such that
Qwr, ..., wp1) = —1+w?+- +w_y,
—19 corresponding to (0,...,0). The Hessian H_;0Q at —z0 is given by
H_o0Qwi,...,wno1) = —wi —+- — wi_;.

This is due to Morse’s lemma.
From the properties of Q, we deduce applying [9] the existence of a linear map M, which

assigns to every f € D(X) a function M f on C such that

| F@@) @iz = [ P
X

c

for all F € D(C). Here dz is an invariant measure on X, dz = dzdy (z = = + iy). Mf(2)
gives the mean of f over the set X (z). Let # = M(D(X)) and H; = M(D(X;)) (i = —1,1).
Using the nature of the critical points of Q and the results of [9], §6 we get:

H = {p+mnoo+myi| ©,%0,%1 € D(C)}
Ho1 = {wo+mobol vo,%0 € D(Q(X-1)}
Hi = {o1+mi1| ¢1,9%1 € D(Q(X1)},

where
|z + L|P—* if n is even

mo(2) = { |z 4+ 1" 2Log|z + 1| if n is odd
and
= |z — 1|2 if n is even
ME = |2 = 1/ 2Log|z — 1| if n is odd
If we topologize H, H_1 and H; as in [9] we have for ¢ = —1,1:
a) M : D(X;) — H; is continuous.

b) The image of the transpose map M’ : H; — D'(X;) is the space of H-invariant
distributions on X;. M’ is injective on H;, because M is surjective.
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Similar properties hold for M : D(X) — H.
So, given an H-invariant distribution on X, there exists an element S € ' such that

<T,p>=<S,Myp > (4.1)

for all ¢ € D(X) . Fix Haar measures dg on G and dh on H in such a way that dg = dzdh,
symbolically. For f € D(G) put

fi(z) = /H flgh)dh  (z = gH).

Given a bi-H-invariant distribution Ty on G, there is an unique H-invariant distribution
T on X satisfying < Tp, f >=<T, f* > (f € D(G)). This is a well-known fact.
We are now prepared to prove that (G,H) is a generalized Gelfand pair. We apply

Criterion 2.2 with JT = T (T € D'(G,H)). We have to show that T = T for all bi-H-
invariant positive-definite distributions T' on G. Since T = T for such T, we shall show the
following: for any bi-H-invariant distribution T' on G one has T' = T. Here < T,f >=<
T.f> fle) =flgV) (g€, fe D(G)). In view of the relation between bi-H-invariant
distributions on G and H-invariant distributions on X, and because of (4.1), this amounts
to the relation

M[(f)"] = M(f")
for all f € D(G). For all F € D(C) one has

. A\ 2)dz = x nm T

/CF( YMI(f)*](2)d /XF(Q( N () (z)d
= /C;F(Q(g))f(g)dg
- /G F(Q(g™1))f(5)dg

Since Q(g9) = Q(g71) (g9 € G) we get the result.
So we have shown:

Theorem 4.1 The pairs (SO(n, C),S0(n —1,C)) are generalized Gelfand pairs for n > 3.

The case n = 2 is easily seen to provide a generalized Gelfand pair too, since SO(2,C) is
an abelian group.
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